∫4ex+6e-x9ex-4e-xdx=
32x+3535log9e2x-4+C
32x+3536log9e2x-4+C
-32x+3536log9e2x-4+C
-52x+3536log9e2x-4+C
52x+3566log9e2x-4+C
Explanation for the correct option:
Step1: Expanding the given integral
∫4ex+6e-x9ex-4e-xdx=∫4ex+6ex9ex-4exdx=∫4e2x+6ex9e2x-4exdx=∫4e2x+69e2x-4dx=49∫9e2x+64×99e2x-4dx[take4ascommonandthen×and÷by9innumerator]=49∫9e2x-4+4+2729e2x-4dx[Addandsubtractby4innumerator]=49∫9e2x-49e2x-4dx+4+272∫19e2x-4dx=49∫dx+352∫19e2x-4dx→(i)
∫19e2x-4dx=∫dzz4+z9[∵z=9e2x-4;⇒e2x=4+z9,⇒2e2xdx=(19)dz]=12∫dzz4+z=12∫dzz4+z
Step 2: Integrating by partial fraction
∫dzz4+z=∫Azdz+∫B4+zdzie,A4+z+Bz=1wherez=-4⇒B=-14wherez=0⇒A=14⇒12∫dzz4+z=1214∫1zdz-14∫14+zdz=1412∫1zdz-∫14+zdz
Substituting in equation (i) we get,
=49∫dx+35218∫1zdz-∫14+zdz=49∫dx+3536∫1zdz-3536∫14+zdz
=49x+3536logz-3536log4+z+C=49x+3536log9e2x-4-3536log9e2x+C=49x+3536log9e2x-4-3536log9-3536loge2x+C[∵logab=loga+logb]=49x+3536log9e2x-4-35362x+C[∵lne=1]=49x-3518x+3536log9e2x-4+C=-2718x+3536log9e2x-4+C=-32x+3536log9e2x-4+C
Hence, option (C) is the correct answer.