∫cos4x+1cotx-tanxdx=kcos4x+C, then
k=-12
k=-18
k=-14
None of these
Explanation for Correct answer:
Solving the equation to find the value of k:
Given,
∫cos4x+1cotx-tanxdx=kcos4x+C→(i)
∫cos4x+1cotx-tanxdx=∫2cos22xcosxsinx-sinxcosxdx∵cos2x=2cos2x-1=∫2cos22xcos2x-sin2xsinxcosxdx=∫2cos22x2cos2xsin2xdx∵cos2x-sin2x=cos2x;sin2x=2sinxcosx=∫cos2xsin2xdx=∫sin4x2dx∵sin2x=2sinxcosx=-12cos4x4+C=-18cos4x+C→(ii)
Equating the equations (i) and (ii)
kcos4x+C=-18cos4x+C⇒k=-18
Hence, option (B) is the correct answer.
Let I =∫exe4x+e2x+1dx.J=∫e−xe−4x+e−2x+1dx,Then, for an arbitrary constant c, the value of J-I equals