wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Evaluate :cosxsin2x(sinx+cosx)dx


A

log(1+tanx)tanx-cotx+C

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

logtanx1+tanx+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

logtanx1+tanx-tanx+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

logtanx(1+tanx)+cotx+C

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

log(1+tanx)tanx-cotx+C


Explanation for the correct option:

Step 1: Using the substitution method,

Divide numerator and denominator by cos3x

I=cosxcos3xsin2x(sinx+cosx)cos3xdx=1cos2xtan2x(sinx+cosx)cosxdx=sec2xtan2x(tanx+1)dx

Let t=tanxdt=sec2xdx

=dtt2(t+1)=dtt2(t+1)

Step 2: Integration of Partial fraction:

1t2t+1=At+Bt2+Ct+1equatingthenumerator1=Att+1+Bt+1+Ct2Lett=-1C=1Lett=0B=1Lett=11=2A+2B+C1=2A+2×1+11-3=2AA=-22=-1

Step 3: substitute these values in integral

dtt2(t+1)=-1t+1t2+1t+1dt=-logt-1t+logt+1+C=-logtanx-1tanx+logtanx+1+C=-cotx+logtanx+1tanx+C[logab=loga-logb]

Hence, option (A) is the correct answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Derivative Application
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon