∫cosec(x-a)cosecxdx=
1sinalogsin(x-a)sinx+C
-1sinalogsin(x-a)sinx+C
1sinalogsin(x-a)+cosecx+C
Explanation for Correct answer:
Finding the value of the given integral:
∫cosec(x-a)cosecxdx=∫1sin(x-a)sinxdx∵cosecx=1sinx=1sina∫sinasin(x-a)sinxdx∵multiplyanddividebysina=1sina∫sinx-x+asin(x-a)sinxdx∵addandsubtractxinnumberator=1sina∫sinx-x-asin(x-a)sinxdx=1sina∫sinxcosx-a-cosxsin(x-a)sin(x-a)sinxdx∵sin(A-B)=sinAcosB-cosAsinB=1sina∫sinxcosx-asin(x-a)sinx-cosxsin(x-a)sin(x-a)sinxdx=1sina∫cosx-asin(x-a)-cosxsinxdx=1sina∫cotx-a-cotxdx=1sinalogsin(x-a-logsinx+C∵∫cotx=logsinx=1sinalogsin(x-a)sinx+C∵loga-logb=logabHence, option (A) is the correct answer.