∫dx1-e2x=
loge-x+e-2x–1+c
logex+e2x–1+c
-loge-x+e-2x–1+c
-loge-2x+e-2x–1+c
loge-2x+e-2x–1+c
Explanation for the correct option:
Evaluate the integral:
∫dx1−e2x=∫e−xdxe−2x(1−e2x)=∫e−xdxe−2x−1Lete−x=z−e−xdx=dz=−∫dzz2−1=−logz+z2−1+c=−loge−x+e−2x−1+c
Therefore, ∫dx1-e2x=-loge-x+e-2x–1+c
Hence the correct answer is option (C).