Evaluate ∫dxx+1(4x+3)
tan-14x+3+c
3tan-14x+3+c
2tan-14x+3+c
4tan-14x+3+c
Explanation for the correct option.
Finding the integral value
Given, ∫dxx+1(4x+3)
Solving the integral,
Let,
4x+3=z2⇒4dx=2zdz⇒2dx=zdz
Now, substituting this in the integral we get,
∫dx(x+1)4x+3=12∫zdzzz2−34+1=42∫dzz2+1=2∫dzz2+1=2tan−1z+c=2tan−14x+3+c∵z=4x+3
Hence, the correct answer is Option (C) .