Evaluate ∫e3logx(x4+1)-1dx
e3logx+c
14logx4+1+c
log(x4+1)+c
12log(x4+1)+c
x4x4+1+c
Explanation for the correct option.
Finding the integral.
Given, ∫e3logx(x4+1)-1dx
Let, x4+1=t⇒4x3dx=dt
Now,
e3logx(x4+1)−1=elogx3(x4+1)−1=x3(x4+1)∵elogx=x
Substituting t in the integral we get,⇒∫e3logx(x4+1)−1dx=∫x3(x4+1)dx=14∫tdt=14logt+C=14log∣x4+1∣+Ct=x4+1
Hence, option (B) is correct.