∫e-logxdx=
e-logx+c
xe-logx+c
elogx+c
log|x|+c
Explanation for the correct option:
Finding the given integral:
∫e-logxdx=∫x-1dx∵enlogm=mn=∫1xdx∵∫1xdx=logx=logx+c
Hence, the correct answer is option (D).
The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C