wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

(x+1)x(1+xex)2dx=?


A

logxexxex+1+11+xex+c

Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B

logxexxex+1-11+xex+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
C

logxex+1xex+11+xex+c

No worries! We‘ve got your back. Try BYJU‘S free classes today!
D

None of these

No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A

logxexxex+1+11+xex+c


Evaluating the integral

I=(x+1)x(1+xex)2dx

Step 1: Dividing and multiplying I by ex

ex(x+1)exx(1+xex)2dx....(i)

Let t=xex...(ii)

Differentiating t w.r.t x we get

dtdx=xddxex+exddx(x)dtdx=xex+exdx=x+1exdt...(iii)

Substituting (ii)and(iii)into(i)

1t1+t2dt1+t-tt1+t2dt[addingandsubtractingtinnumerator]1+tt1+t2dt-tt1+t2dt1t1+tdt-11+t2dt1+t-tt1+tdt-11+t2dt[againaddingandsubtractingtinnumeratorintofirstintegral]1+tt1+tdt-tt1+tdt-11+t2dt1tdt-11+tdt-11+t2dtlnt-11+tdt-11+t2dt+c....(iv)[cinintegratingconstant]

Step 2: Substituting y=1+tand dt=dyinto (iv).

lnt-1ydy-1y2dy+clnt-lny-y-2dy+clnt-lny-y-2+1-2+1+clnt-lny+1y+clnt-ln(1+t)+1(1+t)+c[substitutingy=(1+t)]lnxex-ln(1+xex)+1(1+xex)+c[substitutingt=xex]lnxex(1+xex)+1(1+xex)+clna-lnb=lnab

Hence, option A is the correct answer.


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Extrema
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon