∫(x+1)x(1+xex)2dx=?
logxexxex+1+11+xex+c
logxexxex+1-11+xex+c
logxex+1xex+11+xex+c
None of these
Evaluating the integral
I=∫(x+1)x(1+xex)2dx
Step 1: Dividing and multiplying I by ex
∫ex(x+1)exx(1+xex)2dx....(i)
Let t=xex...(ii)
Differentiating t w.r.t x we get
dtdx=xddxex+exddx(x)⇒dtdx=xex+ex⇒dx=x+1exdt...(iii)
Substituting (ii)and(iii)into(i)
⇒∫1t1+t2dt⇒∫1+t-tt1+t2dt[addingandsubtractingtinnumerator]⇒∫1+tt1+t2dt-∫tt1+t2dt⇒∫1t1+tdt-∫11+t2dt⇒∫1+t-tt1+tdt-∫11+t2dt[againaddingandsubtractingtinnumeratorintofirstintegral]⇒∫1+tt1+tdt-∫tt1+tdt-∫11+t2dt⇒∫1tdt-∫11+tdt-∫11+t2dt⇒lnt-∫11+tdt-∫11+t2dt+c....(iv)[cinintegratingconstant]
Step 2: Substituting y=1+tand dt=dyinto (iv).
⇒lnt-∫1ydy-∫1y2dy+c⇒lnt-lny-∫y-2dy+c⇒lnt-lny-y-2+1-2+1+c⇒lnt-lny+1y+c⇒lnt-ln(1+t)+1(1+t)+c[substitutingy=(1+t)]⇒lnxex-ln(1+xex)+1(1+xex)+c[substitutingt=xex]⇒lnxex(1+xex)+1(1+xex)+c∵lna-lnb=lnab
Hence, option A is the correct answer.
The general solution of a differential equation of the type dxdy+P1x=Q1 is
(a) ye∫P1 dy=∫(Q1e∫P1 dy)dy+C
(b) ye∫P1 dx=∫(Q1e∫P1 dx)dx+C
(c) xe∫P1 dy=∫(Q1e∫P1 dy)dy+C
(d) xe∫P1 dx=∫(Q1e∫P1 dx)dx+C