∫(x4+x2+1)(x2-x+1)dx=?
x33-x22+x+c
x33+x22+x+c
x33-x22-x+c
x33+x22-x+c
Explanation for the correct option:
Evaluating the integral:
∫(x4+x2+1)(x2-x+1)dx
=∫x4+2x2+1-x2(x2-x+1)dx=∫(x2+1)2-x2(x2-x+1)dx[∵(a+b)2=a2+b2+2ab]=∫(x2+1+x)(x2+1-x)(x2-x+1)dx[∵(a2-b2)=(a-b)(a+b)]=∫(x2+1+x)dx=x33+x+x22+c[c=constant]
Hence, Option (B) is the correct answer.