∫x+sinx1+cosxdx=
Step: 1 Solve the given integral
Given: ∫x+sinx1+cosxdx
⇒∫x+2sinx/2cosx/2dx1+2cos2x/2-1⇒∫(x+2sin(x/2)cos(x/2))dx2cos2(x/2)⇒∫xdx2cos2(x/2)+∫tan(x/2)dx⇒12∫xsec2(x/2)dx+∫tan(x/2)dx-(1)
Step: 2 Integrate the first integral by parts,
Let,
u=xandv=tan(x/2)du=dx,dv=(1/2)sec2(x/2)dx
12∫xsec2(x/2)dx=xtan(x/2)-∫tan(x/2)dxsubstitutein(1)12∫xsec2(x/2)dx+ ∫tan(x/2)dx=xtan(x/2)dx-∫tan(x/2)dx+∫tan(x/2)dx=xtan(x/2)+C
Therefore, ∫x+sinx1+cosxdx=xtan(x/2)+C, where C is an arbitrary constant.