Integrate ∫xx4+x2+1dx.
Solve the given integral
Given, ∫xx4+x2+1dx
Put , x2=t
Then 2xdx=dt
Now,
∫xx22+x2+1dx=12∫1t2+t+1dt=12∫1t2+t+1+122-122dt=12∫1t2+t+1+122-14dt=12∫1t2+t+122+34dt
=12∫dtt+122+34=12∫dtt+122+322
=12×23tan-1t+1232+C∵∫dxx2+a2=1atan-1xa=13tan-12t+13+C=13tan-12x2+13+C
Hence , ∫xx4+x2+1dx =13tan-12x2+13+C.
integration of dx / x4 +x2 +1