wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

integrate;
1)dx/ xlogx log(logx)
2)dx/ (x2-1) under root x2+1
3)x5dx/under root 1+x3
4)x under root 1+x2 dx
5)x+1 dx / under root x2+1

Open in App
Solution

1:I=dxx logx loglogxLet, loglogx=t1x logxdx=dt As, ddxlogfx=1fx×f'x and ddxlogx=1xTherefore,I=1t dt=logt+C As, 1xdx=logx+CI=logloglogx+C2I=1x2-1x2+1dxPut, x=1t dx=-1t2dtTherefore,I=-1t21t2-11t2+1 dt =-t dt1-t2 1+t2Now, put 1+t2=u2 2t dt= 2u du t dt=u duTherefore,I=-u du2-u2 u2=-u du-u2-2u=duu2-22I=1u-2u+2du=1221u-2-1u+2duI=122logu-2-logu+2+C As, 1x+adx=logx+a+CI=122logu-2u+2+CI=122log1+t2-21+t2+2+C=122log1+1x2-21+1x2+2+CI=122log1+x2-2x1+x2+2x+C3I=x51+x3dx=x3.x21+x3dxLet, 1+x3=u3x2 dx=du x2 dx=13 duTherefore,I=13u-1u du=13u-1u du=13u12-u-12 duI=13u3232-u1212+C=1323u32-2u12+C=23u u3-1+CI=231+x3 1+x33-1+C4I=x1+x2 dxLet, 1+x2=v2x dx=dvx dx=12dvTherefore,I=121v12 dv =12v1212+C=v12+CI=1+x2+C5I=x+1x2+1 dx=x1+x2 dx+11+x2 dxI=1+x2+11+x2 dx From 4 aboveI=1+x2+logx+1+x2+C Using 1a2+x2 dx=logx+a2+x2+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Cosine Rule
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon