Integrate ∫cotxcosxdx.
Solve the given integral
Given: ∫cotxcosxdx
We know that,
cotx=cosxsinx
and,
sin2x+cos2x=1⇒cos2x=1-sin2x
Now, ∫cotxcosxdx can be written as,
=∫cosxsinxcosxdx
=∫cos2xsinxdx=∫1-sin2xsinxdx=∫dxsinx-∫sinxdx=∫cosecxdx+cosx=-lncosecx-cotx+cosx+C
Hence, the Integral of ∫cotxcosxdx is -lncosecx-cotx+cosx+C, where C is an arbitrary constant.