let√x=tthen(12√x)dx=dt∴I=2∫(tan4t+sec2t)dt=2∫[tan2t(sec2t−1)+sec2t]dt=2∫tan2tsec2tdt−2∫tan2tdt+2∫sec2tdt=2(tan3t3)−2∫(sec2t−1)dt+2tant+c=(23)tan3t−2tant+2t+2tant+c=(23)tan3t−4tant+2t+c=(23)tan3t(√x)−2tan√x+2tan√x+2√x+c∴m=3
∫x2+1x4+1dx will be equal to which of the following
∫5x4+1dx