I=∫sinxsin4xdx=∫sinx4sinxcosxcos2xdx=14∫dxcosx(1−2sin2x)
⇒I=14∫cosxdxcos2x(1−2sin2x)=14∫cosxdx(1−2sin2x)(1−2sin2x)
Let sinx=t
⇒cosxdx=dt
⇒I=14∫dt(1−t2)(1−2t2)=14∫dt(t2−1)(2t2−1)
⇒I=14[∫{1(t2−1)−2(2t2−1)}dt]=14∫1t2−1dt−14∫1t2−12dt
⇒I=14×2ιη(t−1t+1)−1412×√2ιη∣∣
∣
∣
∣∣t−1√2t+1√2∣∣
∣
∣
∣∣+c
⇒I=18ιη∣∣∣sinx−1sinx+1∣∣∣−14√2ιη∣∣∣√2sinx−1√2sinx+1∣∣∣+c
Hence, solve.