wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
I=sinxsin4xdx

Open in App
Solution

I=sinxsin4xdx=sinx4sinxcosxcos2xdx=14dxcosx(12sin2x)
I=14cosxdxcos2x(12sin2x)=14cosxdx(12sin2x)(12sin2x)
Let sinx=t
cosxdx=dt
I=14dt(1t2)(12t2)=14dt(t21)(2t21)
I=14[{1(t21)2(2t21)}dt]=141t21dt141t212dt
I=14×2ιη(t1t+1)1412×2ιη∣ ∣ ∣ ∣t12t+12∣ ∣ ∣ ∣+c
I=18ιηsinx1sinx+1142ιη2sinx12sinx+1+c
Hence, solve.




flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Piecewise Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon