wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
π/20sin2x1+sinx+cosxdx

Open in App
Solution

I=π/20sin2x1+sinx+cosxdx...(1)

I=π/20sin2(π2x)1+sin(π2x)+cos(π2x)dx=π/20cos2x1+cosx+sinx...(2)

[a0f(x)dx=a0f(ax)dx]

Adding (1), (2)

2I=π/20dx1+cosx+sinx=π/20dx1+1tan2x21+tan2x2+2tanx21+tan2x2

=π/20sec2x2dx2(tanx2+1)

Let tanx2+1=udu=sec2x2dx

when x=0u=1,x=π2,u=2

2I=20duu=[logu]20=log2
I=12log2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 7
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon