wiz-icon
MyQuestionIcon
MyQuestionIcon
3
You visited us 3 times! Enjoying our articles? Unlock Full Access!
Question

Integrate : 21lnxx2dx

Open in App
Solution

21lnxx2dx

let lnx=t

1x=dtdx

1xdx=dt

I=21lnxx2dx=ln2|n|=0tete2tdt=ln20tetdt

Applying By parts gives

I=(tet)ln20+ln20etdt

I=ln2(12)+(et)ln20

I=ln22+[12+1]=12ln22

21ln2x2dx=1ln22

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Property 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon