The correct option is
C cos22x4−12lncos2x+cI=∫cos4x−1cotx−tanxdx
=∫1−cos4xtanx−cotx
=∫2sin22xsin2x−cos2xcosxsinxdx
=−∫2sinxcosxsin22xcos2xdx
=∫tan2x(cos4x−1)2dx
m=2x ⇒dm=2dx
⇒I=14∫sinmcosm(2cos2m−2)dm
⇒I=12∫cosmsinmdm−12∫secm×sinmdm
Let cosm=t⇒sinmdm=−dt
⇒I=12∫tdt−12∫dtt
=t24−12lnt+c=cos2m4−12lncosm+c
=cos22x4−12lncos2x+c