Consider the given integral.
I=∫11+tanxdx
I=∫11+sinxcosxdx
I=∫cosxsinx+cosxdx
Now,
u=sinx+cosx
ddx(sinx+cosx)=cosx−sinx
Again, let
cosx=A(cosx−sinx)+B(sinx+cosx)
cosx=(A+B)cosx−(A−B)sinx
Therefore,
A+B=1
A−B=0
A=12,B=12
Therefore,
I=12∫cosx−sinxsinx+cosxdx+12∫cosx+sinxsinx+cosxdx
I=12∫1udu+12∫dx
I=12lnu+x2+C
I=12ln|sinx+cosx|+x2+C
Hence, this is the required value of the integral.