wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
11+tanxdx

Open in App
Solution

Consider the given integral.


I=11+tanxdx


I=11+sinxcosxdx


I=cosxsinx+cosxdx



Now,


u=sinx+cosx


ddx(sinx+cosx)=cosxsinx



Again, let


cosx=A(cosxsinx)+B(sinx+cosx)


cosx=(A+B)cosx(AB)sinx



Therefore,


A+B=1


AB=0


A=12,B=12



Therefore,


I=12cosxsinxsinx+cosxdx+12cosx+sinxsinx+cosxdx


I=121udu+12dx


I=12lnu+x2+C


I=12ln|sinx+cosx|+x2+C



Hence, this is the required value of the integral.


flag
Suggest Corrections
thumbs-up
4
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon