∫2x+35x2+1dx
=15∫10x+155x2+1dx
=15∫10x5x2+1dx+3∫dx5x2+1
=15∫10x5x2+1dx+35∫dxx2+15
putting 5x2+1=t
10xdx=dt
=15∫dtt+35∫dxx2+(1√5)2
=15log|t|+35×1(1√5)tan−1x(1√5)+c
Evaluate the definite integrals. ∫102x+3(5x2+1)dx.