Integrate
∫dx(x+1)√2x2+3x+1
Consider the given integral.
I=∫dx(1+x)√2x2+3x+1 ……. (1)
Let t=11+x
dtdx=−1(1+x)2
dx=−(1+x)2dt
Therefore,
I=−∫(1+x)2dt(1+x)√2x2+3x+1
I=−∫dtt√2(1−tt)2+3(1−tt)+1
I=−∫dtt√2(1+t2−2tt2)+3(1−tt)+1
I=−∫dtt√2(1+t2−2t)+3t(1−t)+t2t2
I=−∫dt√2−4t+3t
I=−∫dt√2−t
Let p=2−t
dpdt=−1
−dp=dt
Therefore,
I=∫dp√p
I=2√p+C
On putting the value of p, we get
I=2(√2−t)+C
On putting the value oft, we get
I=2(√2−(11+x))+C
I=2(√2+2x−11+x)+C
I=2(√2x+11+x)+C
Hence, this is the answer.