∫dx√x+1+√x+2
=∫(√x+1−√x+2)(√x+1+√x+2)(√x+1−√x+2)dx
=∫(√x+1−√x+2)x+1−x−2dx
=−∫(√x+1−√x+2)dx
=−⎡⎢⎣23(x+1)32−23(x+2)32⎤⎥⎦+C
=23⎡⎢⎣(x+2)32−(x+1)32⎤⎥⎦+C
Integrate the following functions. ∫1√(x−1)(x−2)dx.