Consider the given integral.
I=∫x3dxx4(x3+1)
I=∫dxx4(1+1x3)
Let t=1+1x3
dtdx=0−3x4
−dt3=dxx4
Therefore,
I=−13∫dtt
I=−13ln(t)+C
On putting the value of t, we get
I=−13ln(1+1x3)+C
Hence, this is the answer.