Consider the given integral.
I=∫(3sinx−2)cosx(5−3cos2x−8sinx)dx
Let t=5−3cos2x−8sinx
dtdx=0−3(−sin2x)2−8cosx
dtdx=6sin2x−8cosx
dtdx=12sinxcosx−8cosx
dt4=cosx(3sinx−2)dx
Therefore,
I=14∫dt(t)
I=14ln(t)+C
On putting the value of t, we get
I=14ln(5−3cos2x−8sinx)+C
Hence, this is the answer.