wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
(3sinx2)cosx(53cos2x8sinx)dx

A
I=14ln(5cos2x8sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
I=14ln(53cos2x8sinx)+C
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
I=14ln(23cosx8sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
I=14ln(53cosx8sinx)+C
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A I=14ln(53cos2x8sinx)+C

Consider the given integral.

I=(3sinx2)cosx(53cos2x8sinx)dx

Let t=53cos2x8sinx

dtdx=03(sin2x)28cosx

dtdx=6sin2x8cosx

dtdx=12sinxcosx8cosx

dt4=cosx(3sinx2)dx

Therefore,

I=14dt(t)

I=14ln(t)+C

On putting the value of t, we get

I=14ln(53cos2x8sinx)+C

Hence, this is the answer.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Transformations
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon