Consider the given integral.
I=∫(x−1)2x3−3x2+3x+2dx
Let t=x3−3x2+3x+2
dtdx=3x2−6x+3
dt3=x2−2x+1
dt3=(x−1)2
Therefore,
I=13∫1tdt
I=13ln(t)+C
On putting the value of t, we get
I=13ln(x3−3x2+3x+2)+C
Hence, this is the answer.