Consider the given integral.
I=∫sin−1x√1−x2dx
Let t=sin−1x
dt=dx√1−x2
Therefore,
I=∫tdt
I=t22+C
On putting the value of t, we get
I=(sin−1x)22+C
Hence, this is the answer.
Integrate the following functions. ∫sin−1x√1−x2dx.
Integrate the function. ∫xcos−1x√1−x2dx.
Integrate the following functions. ∫etan−1x1+x2dx.