Consider the given integral.
I=∫√tanxsinxcosxdx
I=∫√tanxtanxcosx1secxdx
I=∫sec2x√tanxtanxdx
I=∫sec2x√tanxdx
Let t=tanx
dt=sec2xdx
Therefore,
I=∫1√tdt
I=2√t+C
On putting the value of t, we get
I=2√tanx+C
Hence, this is the answer.