wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate :
x2sin1x(1x2)52

Open in App
Solution

x2sin1x(1x2)5/2dx
let sin1x=t ; x=sint
dtdx=11x2
dt=11x2dx
x2sin1x(1x2)1/2(1x2)2dx
=x2(1x2)2tdt
=sin2t(1sin2t)2tdt
=sin2t(cos2t)2tdt
=tan2t.sec2ttdt
=tan2tsec2tdtt((tan2tsec2tdt)ddt(t))dt
=tan3t3.ttan3t3dt
=ttan3t313[tan2ttantdt]
=ttan3t313[sec2t.tantdttantdt]
=ttan3t313(tan2t2)13ln(sect)+c
=(sin1x)tan3(sin1x)3tan2(sin1x)6ln(sec(sin1x))3+c

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Polar Representation of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon