We have,
I=∫xex2dx
Let t=x2
dtdx=2x
dt2=xdx
Therefore,
I=12∫dtet
I=12∫e−tdt
I=12(e−t−1)+C
I=−e−t2+C
I=−12et+C
On putting the value of t, we get
I=−12ex2+C
Hence, this is the answer.
Integrate the following functions. ∫xex2dx.
∫ex² dx = ?