Consider the given integral.
I=∫xsin−1x√1−x2dx
Let f(x)=sin−1x and g(x)=x√1−x2.
We know that,
∫f(x)g(x)dx=f(x)∫g(x)dx−∫(f′(x)∫g(x)dx)dx
Therefore,
I=sin−1x∫x√1−x2dx−∫(d(sin−1x)dx∫x√1−x2dx)dx …… (1)
I=I1+I2
Let 1−x2=t. Therefore,
dx=dt−2x
Now,
I1=∫x√1−x2dx
I1=∫x√tdt−2x
I1=∫1−2√tdt=−12∫t−1/2dt=−12(t1/21/2)
I1=−t1/2
I1=−√t
I1=−√1−x2
Therefore,
I=sin−1x(−√1−x2)−∫d(sin−1x)dx(−√1−x2)dx
I=−√1−x2sin−1x+∫d(sin−1x)dx(√1−x2)dx
I=−√1−x2sin−1x+∫1√1−x2(√1−x2)dx
I=−√1−x2sin−1x+∫1⋅dx
I=−√1−x2sin−1x+x+C
I=x−√1−x2sin−1x+C
Hence, this is the required value of the integral.