wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
xsin1x1x2dx.

Open in App
Solution

Consider the given integral.

I=xsin1x1x2dx

Let f(x)=sin1x and g(x)=x1x2.

We know that,

f(x)g(x)dx=f(x)g(x)dx(f(x)g(x)dx)dx

Therefore,

I=sin1xx1x2dx(d(sin1x)dxx1x2dx)dx …… (1)

I=I1+I2

Let 1x2=t. Therefore,

dx=dt2x

Now,

I1=x1x2dx

I1=xtdt2x

I1=12tdt=12t1/2dt=12(t1/21/2)

I1=t1/2

I1=t

I1=1x2

Therefore,

I=sin1x(1x2)d(sin1x)dx(1x2)dx

I=1x2sin1x+d(sin1x)dx(1x2)dx

I=1x2sin1x+11x2(1x2)dx

I=1x2sin1x+1dx

I=1x2sin1x+x+C

I=x1x2sin1x+C

Hence, this is the required value of the integral.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon