wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate : 1+tanxx+logsecxdx

Open in App
Solution

Given : 1+tanxx+logsecxdx

Let I=1+tanxx+logsecxdx

Let t=x+logsecx

dt=(1+1secxsecxtanx)dx

dt=(1+tanx)dx

(1+tanx)dxx+logsecx=dtt

I=log|t|+c

where (t=x+logsecx)

I=log|x+logsecx|+c


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon