Consider the given integral.
I=∫dx(1+x)√3+2x−x2 ……. (1)
Let t=11+x
dtdx=−1(1+x)2
dx=−(1+x)2dt
Therefore,
I=−∫(1+x)2dt(1+x)√3+2x−x2
I=−∫dtt√3+2(1−tt)−(1−tt)2
I=−∫dtt√3+2(1−tt)−(1+t2−2tt2)
I=−∫dtt√(3t2+2t−2t2−1−t2+2tt2)
I=−∫dt√4t−1
Let p=4t−1
dpdt=4
dp4=dt
Therefore,
I=−14∫dp√p
I=−14(2√p)+C
I=−12(√p)+C
On putting the value of p, we get
I=−12(√4t−1)+C
On putting the value of t, we get
I=−12(√4(11+x)−1)+C
I=−12(√4−1−x1+x)+C
I=−12(√3−x1+x)+C
Hence, this is the answer.