wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate : sin3xcos3xsin2x cos2xdx

Open in App
Solution

sin3xcos3xsin2xcos2xdx
by simplifying,
sin3xsin2xcos2xcos3xsin2xcos2x

=sinxcosx.1cosxcosxsinx.1sinx=tanxsecxcotxcosecx

sin3xcos3xsin2xcos2x=tanxsecxcotxcosecx....(1)

integrating equation (1),

secxtanx dxcosecxcotx dx

Therefore,
sin3xcos3xsin2xcos2x=secx+cosecx+C {secx.tanx=secx and,
cosecx.cotx=cosecx}

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Compound Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon