∫v2v2+2v+1dv
⇒∫v2+(2v+1)−(2v+1)v2+2v+1dv
⇒∫(v2+2v+1)−(2v+1)v2+2v+1dv=∫dv−∫2v+1v2+2v+1dv
⇒v−∫2v+1+(1−1)v2+2v+1dv
⇒v−∫2v+2−1)v2+2v+1dv
⇒v−[∫2v+2dvv2+2v+1−∫dvv2+2v+1]
⇒v−[∫(2v+2)dvv2+2v+1−∫dvv2+2v+1]
Let v2+2v+1=t
(2v+2)dv =dt
⇒v−[∫dtt−∫dv(v+1)2]
⇒v−ln|t| +−1v+1+c
⇒v−ln∣∣v2+2v+1∣∣ - 1v+1+c