Solution :
I=∫a0dxax+a2−x2
=∫a0dxa2−(ax2−ax)
=∫a0dxa2−[(x−12a)2]−x24
=∫a0dxa2−a24−[(x−a2)2]
=∫a0dx5a24−[(x−a/2)2]
=∫a0dx(√5a2)2−[(x−a2)2]
=12a√52ln|x−a2−√52ax−a2−√5a2|
=[√5aln|x−a/2+√52ax−a2−√52a|]a0
=√5aln|a/2+√5/2aa/2−√5/2a|−√5aln|−a/2+√5/2a−a/2−√5/2a|
=√5aln|a+√5aa−√5a|−√5aln|−a+√5a−a−√5a
=√5a[ln|1+√51−√5|−√−1+√5−1−√5|]