∫√1+x1−xdx
Put x=cos2θ
dx=−2sin2θdθ
=−∫√1+cos2θ1−cos2θ×2sin2θdθ
=−2∫√2cos2θ2sin2θ×sin2θdθ
=−2∫cosθsinθ×2sinθcosθdθ
=−4∫cos2θdθ
=−2∫(1+cos2θ)dθ=−2θ−2sin2θ2
=−cos−1x−√1−x2
=−[cos−1x+√1−x2]−11
=[(cos−11+π)−(cos−1−1+0)]
=[0−π]
=π