wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate
sin4x+cos4xsin3xcosxdx,

Open in App
Solution

sin4x+cos4xsin3xcosxdx=1+tan4xsin3xcosxdx=1+tan4xsin3xcos3xcos2xdx=1+tan4xtan3xsec2xdx
Now let tanx=usec2xdx=du

=1+u4u3du
Now let u2=t2u.du=dtdu=dt2t
=1+t2t32dt2t=121+t2t2dt
Now let t=tanθdt=sec2θdθ
=121+tan2θtan2θ(sec2θ)dθ=12secθsec2θtan2θdθ=12secθ(1+tan2θtan2θ)dθ=12secθ(cot2θ+1)dθ=12secθ.cot2θdθ+12secθdθ=12secθdθ+12cotθ.cscθdθ=12(ln|secθ+tanθ|cscθ)+C=12[ln[1+u4+u2]1+u4u2]+C=12[ln(1+tan4x+tan2x)1+tan4xtan2x]+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Logarithmic Differentiation
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon