∫tan−1√1+sinx1−sinxdx.∫tan−1√1+sinx1−sinx×1+sinx1+sinxdx∫tan−1√(1+sinx)21−sin2xdx.∫tan−1√(1+sinxcosx)2∫tan−1(1+sinxcosx)dx.∫tan−1⎛⎜
⎜⎝sin2x2+cos2x2+2sinx2cosx2cos2x2−sin2x2⎞⎟
⎟⎠dx∫tan−1(sinx2+cosx2)2(cos2x2−sin2x2)dx∫tan−1⎛⎜
⎜
⎜
⎜
⎜⎝(sinx2+cosx2)2(cosx2+sinx2)(cosx2−sinx2)dx⎞⎟
⎟
⎟
⎟
⎟⎠(A2−B2)=(A−B)(A+B)∫tan−1⎛⎜
⎜⎝sinx2+cosx2cosx2−sinx2⎞⎟
⎟⎠dx∫tan−1cosx2(tanx2+1)cosx2(1−tanx2)dx∫tan−1⎛⎜
⎜⎝1+tanx21−tanx2⎞⎟
⎟⎠dx∫tan−1⎛⎜
⎜⎝tanπ4+tanx21−tanx2.tanπ4⎞⎟
⎟⎠dx{weknowtanπ4=1}tan−1tan(π4+x2)dx.⎧⎪⎨⎪⎩Usingformulabetan(A+B)=tanA+tanB1−tanA.tanB∫(π4+x2)dx(π4x+x24+c)Ans.