wiz-icon
MyQuestionIcon
MyQuestionIcon
2
You visited us 2 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
tan11+sinx1sinx,π2<x<π2

Open in App
Solution

tan11+sinx1sinxdx.tan11+sinx1sinx×1+sinx1+sinxdxtan1(1+sinx)21sin2xdx.tan1(1+sinxcosx)2tan1(1+sinxcosx)dx.tan1⎜ ⎜sin2x2+cos2x2+2sinx2cosx2cos2x2sin2x2⎟ ⎟dxtan1(sinx2+cosx2)2(cos2x2sin2x2)dxtan1⎜ ⎜ ⎜ ⎜ ⎜(sinx2+cosx2)2(cosx2+sinx2)(cosx2sinx2)dx⎟ ⎟ ⎟ ⎟ ⎟(A2B2)=(AB)(A+B)tan1⎜ ⎜sinx2+cosx2cosx2sinx2⎟ ⎟dxtan1cosx2(tanx2+1)cosx2(1tanx2)dxtan1⎜ ⎜1+tanx21tanx2⎟ ⎟dxtan1⎜ ⎜tanπ4+tanx21tanx2.tanπ4⎟ ⎟dx{weknowtanπ4=1}tan1tan(π4+x2)dx.Usingformulabetan(A+B)=tanA+tanB1tanA.tanB(π4+x2)dx(π4x+x24+c)Ans.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Irrational Algebraic Fractions - 2
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon