Consider the given integral.
I=∫x√x2+2dx
Let t=x2+2
dtdx=2x+0
dt2=xdx
Therefore,
I=12∫√tdt
I=12⎛⎜ ⎜ ⎜⎝t3/232⎞⎟ ⎟ ⎟⎠+C
I=t3/23+C
On putting the value of t, we get
I=(x2+2)3/23+C
Hence, this is the answer.