We have,
I=∫π20sinxsinx+cosxdx …….. (1)
We know that
∫baf(x)dx=∫baf(a+b−x)dx
Therefore,
I=∫π20sin(π2−x)sin(π2−x)+cos(π2−x)dx
I=∫π20cosxcosx+sinxdx
I=∫π20cosxsinx+cosxdx …….. (2)
On adding equation (1) and (2), we get
2I=∫π20cosxsinx+cosxdx+∫π20sinxsinx+cosxdx
2I=∫π20sinx+cosxsinx+cosxdx
2I=∫π20(1)dx
2I=(x)π20
2I=(π2−0)
I=π4
Hence, this is the answer.