wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate: π/40(tanx+cotx)dx

Open in App
Solution

I=π40(tanx+cotx)dx

I=π40[sinxcosx+cosxsinx]dx

I=π40sinx+cosxsinx×cosxdx

Let sinxcosx=t

(cosx+sinx)dx=dt

(sinxcosx)2=t2

12sinx.secx=t2

sinx.cosx=1t22

so I=0121t2dt

I=2sin1t|01

I=02×3π2

I=3π2

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Special Integrals - 1
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon