Consider the given integral.
I=∫dxx2(x+1)
I=−∫311xdx+∫311x2dx+∫311x+1dx
I=−[lnx]31+[−1x]31+[ln(x+1)]31
I=−[ln3−ln1]−(13−11)+[ln(3+1)−ln(1+1)]
I=−[ln3−0]−(−23)+[ln4−ln2]
I=−ln3+23+[2ln2−ln2]
I=−ln3+23+ln2
I=23+ln23
Hence, this is the answer.