Consider the given integral.
I=∫31dxx2(x+1)
I=∫31(−1x+1x2+1x+1)dx
I=[−ln(x)−1x+ln(x+1)]31
I=[(−ln(3)−13+ln(3+1))−(−ln(1)−11+ln(1+1))]
I=−ln3−13+ln4+1−ln2
I=−ln3+23+2ln2−ln2
I=−ln3+23+ln2
I=23+ln2−ln3
I=23+ln23
Hence, this is the answer.