wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate :
6sin(x)cos2(x)+sin(2x)23sin(x)(cos(x)1)2(5sin2(x))dx

Open in App
Solution

=6sinXcos2X+2sinXcosX23sinX(cosX1)2(4+cos2X)

=6cos2X+2cosX23(t1)2(4+t)2Xdt(sinX)
i.e, cosx=tsinxdx=dt {substitution}

(6t2+2t23)dt(t1)2(4+t2)dt

232t6t2(t1)2(4+t)2

232t6t2(t1)2(4+t)2=At+B4+t2+Ct1+D(t1)2

By solving we get D=3;A=4;B=5;C=4

4t5dt4+t2+4t1dt+3(t1)2dt

4t4+t2dt54+t2dt4log(t1)

=2log(4+t2)4log(t1)+3t1+C

=2log(4+t2)4log(t1)+3t1

=5t2tan1(t2)+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon