Let,
I=∫12sinx+3dx
I=∫14tan(x2)tan2(x2)+1+3dx
Substitute,
u=tanx2
dx=2sec2(x2)du=2u2+1du
So,
I=2∫13u2+4u+3du
I=2∫1(√3u+2√3)2+53du
Substitute,
v=3u+2√5
⇒du=√53dv
Therefore,
I=2∫√55v2+5dv
I=2√5∫1v2+1dv
I=2√5tan−1(v)
I=2√5tan−1(3u+2√5)
I=2√5tan−1⎛⎜ ⎜⎝3tanx2+2√5⎞⎟ ⎟⎠+C
Hence, this is the required result.