We have,
I=∫1+x21−x2dx
I=−∫1+x2x2−1dx
I=−∫x2+1−1+1x2−1dx
I=−∫x2−1x2−1dx−∫2x2−1dx
I=−∫1dx−2∫1x2−1dx
I=−x−2(12log(x−1x+1))+C
I=−x+log(x+1x−1)+C
I=log(x+1x−1)−x+C
Hence, this is the answer.