wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate:
cos4xsin2xdx

Open in App
Solution

I=cos4xsin2xdx

=cos22xsin22xsin2xdx

=(cos2xsin2x)24sin2xcos2xsin2xdx

=cos4x+sin4x6sin2xcos2xsin2xdx

=sin4x+cos2x(17sin2x)dxsin2x

[sin2x+cos2x=1]

sin2xdx+cos2x(17sin2x)dxsin2x

=I1+I2 ............. (1)

I1=sin2xdx=(1cos2x)2dx

=x2sin2x4 ....... (2)

I2=cos2x(17sin2x)sin2xdx

=cot2dxd7cos2xdx

=(csc2x1)dx72(1+cos2x)dx

=cotxx72x74sin2x

=cotx74sin2x92x ........ (3)

I=I1+I2

I=cotx2sin2x4x+C

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Integration of Trigonometric Functions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon