I=∫cos4xsin2xdx
=∫cos22x−sin22xsin2xdx
=∫(cos2x−sin2x)2−4sin2xcos2xsin2xdx
=∫cos4x+sin4x−6sin2xcos2xsin2xdx
=∫sin4x+cos2x(1−7sin2x)dxsin2x
[∵sin2x+cos2x=1]
∫sin2xdx+∫cos2x(1−7sin2x)dxsin2x
=I1+I2 ............. (1)
I1=∫sin2xdx=∫(1−cos2x)2dx
=x2−sin2x4 ....... (2)
I2=∫cos2x(1−7sin2x)sin2xdx
=∫cot2dxd−7∫cos2xdx
=∫(csc2x−1)dx−72∫(1+cos2x)dx
=−cotx−x−72x−74sin2x
=−cotx−74sin2x−92x ........ (3)
I=I1+I2
⇒I=−cotx−2sin2x−4x+C