Consider the given integral.
I=∫dxx5(1+x−4)
Let t=x−4
dtdx=−4x−5
−dt4=dxx5
Therefore,
I=−14∫dt(1+t)
I=−14ln(1+t)+C
On putting the value of t, we get
I=−14ln(1+x−4)+C
I=−14ln(1+1x4)+C
I=−14ln(x4+1x4)+C
I=14ln(x4x4+1)+C
Hence, this is the answer.