wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

Integrate :
13sinx+4cosxdx

Open in App
Solution

dx3sinx+4cosx

=dx3⎜ ⎜2tanx21+tan2x2⎟ ⎟+4⎜ ⎜1tan2x21+tan2x2⎟ ⎟

=dx3⎜ ⎜2tanx2sec2x2⎟ ⎟+4⎜ ⎜1tan2x2sec2x2⎟ ⎟

=sec2x2dx4tan2x26tanx24

Let t=tanx2dt=12sec2x2dx

=2dt4t26t4

=dt2t23t2

=dt2t24t+t2

=dt2t(t2)+(t2)

=dt(t2)(2t+1)

=2dt(2t4)(2t+1)

=25(2t4)(2t+1)(2t4)(2t+1)dt

=25(2t4)(2t+1)(2t4)(2t+1)dt

=25(2t4)dt(2t4)(2t+1)25(2t+1)dt(2t4)(2t+1)

=25dt(2t+1)25dt(2t4)

=15log|2t+1|15log|2t4|+c

=15log2t+12t4+c

=15log∣ ∣ ∣2tanx2+12tanx24∣ ∣ ∣+c where t=tanx2


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Trigonometric Functions in a Unit Circle
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon